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0. Introduction

Differential algebraic equations (DAE) are special implicit ordinary differ-
ential equations (ODE)

f@' (@), z(t),¢) =0, (0.1)

where the partial Jacobian f;(y,,t) is singular for all values of its argu-
ments.

These DAEs arise in various fields of applications. The most popular
ones are simulation of electrical circuits, chemical reactions subject to in-
variants, vehicle system dynamics, optimal control of lumped-parameter sys-
tems, semi-discretization of partial differential equation systems and singular
perturbation problems. For a fairly detailed survey of applications we refer
to Brenan et al. (1989).

In the last few years, DAEs have developed into a highly topical subject
in applied mathematics. There is a rapidly increasing number of contri-
butions devoted to DAEs in the mathematical literature as well as in the
fields of mechanical engineering, chemical engineering, system theory, etc.
Frequently, other names such as semi-state equations, descriptor systems,
singular systems are assigned to DAEs. In 1971 C.W. Gear proposed that
DAEs should be handled numerically by backward differentiation formulae
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(BDF). Since then, powerful codes which successfully simulate large circuits
have been developed. For a long time DAEs were considered to be essentially
similar to regular implicit ODEs in general. However, challenged by compu-
tation results that could not be brought into line with this supposition (e.g.
Sincovec et al., 1981), the mathematical community started investigating
DAEs more thoroughly. With their famous paper, C.W. Gear et al. (1981)
initiated a discussion on DAEs which will surely continue for a long time.

What kind of mathematical objects are DAEs? First of all, they are
singular ODEs. Can they really be treated numerically like regular ODEs?
Surely not in every case! How can one characterize single classes of problems
for which methods that have proved their value for regular ODEs work well
in other instances? What is the reason for their not working otherwise?
How are appropriate numerical methods to be constructed then? All these
questions can only be answered when more is known about the mathematical
nature of DAEs.

In 1984 W.C. Rheinboldt began regarding DAEs as differential equations
on manifolds. This approach provided useful insights into the geometri-
cal and analytical nature of these equations (e.g. Reich (1990), Rabier and
Rheinboldt (1991)).

Assuming sufficient smoothness of all functions involved, the DAE

'+ g(u,v) =0
o} 02

can be regarded as a vector field on
S1 :={[ :j:l :h(u,v)=0},

= —g(u,v)
o = B, )" 1 (1, 0)g(w, ) } [ v ] €5,

provided that h/(u,v) is nonsingular everywhere. All solutions belong to
S1, and each point of S is passed by a solution.
The DAE
v +g(u,v) =0
h(u) = 0 (0.3)

is more complicated. By differentiating twice and eliminating derivatives it
can be checked that this system generates the vector field

v = —g(u,v }
v = (h'(u)gy (u, v)) "H{A" (W) g(u, v) + k' (w)g,(u, v)}g(u,v) |’
(uT,vT)T € 8o,
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where now
Sp = {[ v ]  h(w) = 0, ' (u)g(u, v) = o}

represents the state manifold. The nonsingularity of h’(u)g} (u,v) has been

assumed here.
Analogously, for the DAE

v + flu,v,w) =0
u + g(u,v) =0 (0.4)

h(u) =0
one can define a vector field on the manifold
Sz = {(T,vT,wh)T : h(u) = 0, h'(u)g(u,v) = 0,
" (w)g(u, v)g(u, v)+h' (u)(gy (u, v)9(u, v) + gy (v, v) f (u, v, w) =0)}

provided that h’(u)g, (u,v)f,,(u, v, w) remains nonsingular.

In these three cases one speaks of semi-explicit DAEs with index 1, 2 and
3, respectively. The special structure of equations (0.3) and (0.4) is called
the Hessenberg form.

If these vector fields were not considered on the specified manifolds S; C
R™, but formally on R™, then the resulting regular ODEs could be inte-
grated with the usual methods. Even if we start with consistent initial
values, we will very swiftly drift away from S; and S3 in (0.3) and (0.4),
respectively. Hence, many authors are concerned with the development of
very special methods for (0.3) and (0.4), thereby exploiting the geometry of
these equations. There are important applications that have this form, e.g.
the Euler-Lagrange formulation of constrained mechanical systems leads to
the form (0.4).

Under the corresponding assumptions, a state manifold and a vector field
can also be assigned to the general DAE (0.1). However, both are only
defined implicitly and, in general, not available in practice. This has already
been indicated by the simple case of equation (0.4) and S3. More general
approaches for the constructive use of geometry for numerical mathematics
are not known to the author.

If we have a closer look at equation (0.2) it becomes obvious that, theo-
retically, in the neighbourhood of a consistent initial value (uf,v)T € S;
we could investigate the locally decoupled system

v +g(u,S(u)) =0, v=58(u) (0.5)

with h(u, S(u)) = 0 instead of (0.2). Now it would be advantageous to inte-
grate this regular ODE for the component u numerically and, then, simply
to determine v; = S(u;) in each case. With suitable integration methods,
this idea can even be realized in practice for general index-1 equations (0.1).
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We would like to point out another aspect of the characterization of DAEs,
which is fundamental, in particular, to the numerical treatment. For this,
we consider the special equation of the form (0.3), which is perturbed by an
inhomogeneity,

W-v=0
S } . (06)

Here, the function p has to be differentiated, i.e. v(t) = p’(t) has to be com-
puted. Differentiation is one of the classical examples of ill posed problems.
A corresponding inhomogeneous problem of the form (0.4) will require a
second differentiation. The greater the number of differentiations, the more
strongly ill posed the problems become.

Both (0.5) and (0.6) make clear that a natural approach to the solution
is directed to u € C!, v € C. In many applications one aims at reducing
smoothness, which has, unfortunately, not yet been successfully taken into
account in the interpretation of DAEs used to represent ODEs on manifolds.

In the present paper we characterize general DAEs (0.1) under possibly
minimal smoothness demands, where the characterization aims at the nu-
merical tractability. Since (from the present point of view) all the essentially
new numerical difficulties in comparison with regular ODEs have already be-
come for linear equations with variable coefficients, we devote most of our
investigations to the analytical characterization and investigation of integra~
tion methods for linear equations.

To apply the results to nonlinear equations we slightly modify the stan-
dard arguments of discretization theory. The BDFs are studied in detail
here because, on the one hand, they can be especially recommended just
for DAEs and, on the other hand, they serve, in a certain sense, as model
methods.

We want to emphasize that this paper does not aim at providing a survey
of all the available results and methods. In particular, we do not enter
into the details of the many nice but very special results for (0.3) and (0.4)
(for this, see e.g. Hairer et al. (1989), Lubich (1990), Potra and Rheinboldt
(1991), Simeon et al. (1991)). We focus our interest on exposing problems
and showing constructive approaches for their solution, where we try to
maintain a uniform concept of representation.

Altogether, many problems with respect to DAEs still remain open. An
appropriate numerical treatment requires — provided it is to be more than
only favourable intention — profound knowledge about the analytical back-
ground of this type of equation.

The paper is organized as follows. In Section 1 the reader becomes ac-
quainted with the fact that additional stability conditions and weak insta-
bilities may occur in the integration of linear constant coefficient DAEs.
Section 2 is devoted to the analytical and geometrical foundations of gen-
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eral DAEs, where those of linear equations with time-dependent coefficients
play a special role. In Section 3 the BDFs are discussed in detail, as already
mentioned, as a model for constructing methods. Section 4 presents brief
outlines on index reduction as well as on boundary value problems.

1. Analysing linear constant coefficient equations

Linear equations
Az'(t) + Bz(t) = q(t) (1.1)

with matrix coefficients A, B € L(R™), A singular, are easy to understand
when taking into account the close relationship with matrix pencils {A, B}
(e.g. Gantmacher (1966)). In this section we explain some basic facts on
how and for what reasons well-known discretization methods behave when
applied to DAEs.

Definition The ordered pair of matrices {A, B} forms a regular matriz
pencil if the polynomial p(A) := det(AA + B) does not vanish identically.
Otherwise, the pencil is called singular.

Weierstrass (cf. Grantmacher (1966)) has shown that a regular pencil
{A, B} can be transformed into { A, B},

A := EAF = diag(1, J), }

B := EAF = diag(W, ) (1.2)

by the use of suitable regular matrices E, F € L(R™). Thereby, W € L(R¥),
and J € L(R™ ) is a nilpotent Jordan block matrix with chains

01
0

1
0

Definition {4, B} given by (1.2) is called the Kronecker canonical normal
form of the regular pencil {4, B}. The indez of a regular pencil is defined
to be ind(A, B) := ind(J) := maximal Jordan chain order of J.

An equation of type (1.1) with a singular matrix pencil {A, B} is some-
what incomplete. For these equations, the homogeneous initial value prob-
lem

Ar'(t)+ Bz(t) =0, z(0)=0

has more than countably many different solutions (see Griepentrog and Mérz
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(1986)). A typical example is

10 11
a3 8) a-[33]
Singular matrix pencils in (1.1) indicate some defect in the modelling.
Here, we are interested in equations (1.1) with regular matrix pencils

{A, B} only. Using the transformation matrices E, F leading to the Kro-
necker normal form (cf. (1.2)) we may transform (1.1) equivalently into

AZ'(t) + Bi(t) = 4(t), (1.3)

where A, B are given by (1.2), §(t) := Eq(t), #(t) := F~1z(t). In more
detail, (1.3) reads

u(t) +Wu(t) = p(t) (1.4)
JU(t) +u(t) = r(t), (1.5)

where u, v and p, r are the related components of  and §, respectively. Now,
the decoupled system (1.4), (1.5) is said to be the Kronecker normal form
of equation (1.1). Moreover the index of equation (1.1) can also be traced
back to ind(A, B) =: u.

In accordance with the Jordan structure of J, equation (1.5) decouples
into parts such as

0 1
) w'(t) + w(t) = s(t) (1.6)
0
of dimension vy < p.
If vy = 1, then (1.6) simply yields
w(t) = s(t).

If ¥ = 2, then (1.6) represents

wh(t) + wi(t) = s1(t
B a0 o)} )

which leads to

o= (3750

For v = 3 we have

wy(t) +wi(t) = s1(t)
wy(t) + wa(t) = s2(t) } ; (1.8)
ws(t) = 83(t)
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hence

s1(t) — (s2(t) — s5(t))’
w(t) = | s2(t) — s5(t) .
s3(t)

In general, if u denotes the index of our equation (1.1), then (1.5) contains
at least one part (1.6) of dimension v = u, and, in consequence, certain
components of the right-hand side have to be differentiated i — 1 times.
Clearly, (1.4) is a regular linear ODE. For all continuous right-hand sides
p(-) : T — R there is a unique solution u(-) : T — R* passing through given
(ud,t0) € RF x T.
On the other hand, the solution of (1.5) may be expressed as

p—1
v(t) = D (-1 (Fr(e) Y.

J=0

The initial value v(tp) is fixed completely, and for solvability we have to
assume r(-) : Z — R™F to be as smooth as necessary. From this point
of view, for u > 1, equation (1.5) represents a differentiation problem. It
will be pointed out later that this causes numerical difficulties. (Recall the
well known fact that differentiation represents an ill posed problem in the
continuous function space!)

Clearly, initial value problems for (1.1) only become solvable for consistent
initial values

a(to) = Falto) = F [ %, |,

where u® € RF is a free parameter, but v(ty) is determined as described
earlier.

This is the second essential difference from regular ODEs and, when 1 > 1,
this also entails considerable numerical problems, which have not yet been
solved sufficiently.

At this point it should be emphasized again that the canonical normal
form is used only to provide an immediate insight into the structure of
(1.1). However, we do not think of transforming (1.1) into (1.5), (1.6) in
practical computations!

Next we check what will happen when numerical integration methods
approved for regular ODEs are applied to the singular ODE (1.1). First we
consider the multi-step method

1, < : -
FAY oz + B Bize—; = q(to), (1.9)
3=0 3=0
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8
te:=)_ Bjtej, ap # 0,
j=0

where z; is expected to approximate the true solution value z(t;). Again we
decouple equations (1.9) according to the Kronecker canonical normal form
by multiplying (1.9) by E and transforming

F_1$i=ii=[ui].

Ui
This yields
13 d _
A Y ajue i+ WD Bue; = p(te) (1.10)
j=0 7=0
1S i _
JEZajvg_j + Zﬂj’vg_j = r(te). (1.11)
i=0 i=0

Formula (1.10) represents the given multi-step method applied to the in-
herent regular ODE within the singular system (1.1). On the other hand,
(1.11) may be solved with respect to v, if the matrix

a().] + hﬂo[

is nonsingular, that is for Gy # 0.
In the index-1 case J = 0, and (1.11) simply becomes

zs:ﬂj’vl_j = ’I‘(t-g). (1.12)
j=0

In Maérz (1984, 1985) it was pointed out that, for the stability of the dif-
ference equation (1.12), it is necessary for the polynomial 377, B; X7 to
have all its roots within the interior of the complex unit circle. In partic-
ular, symmetric schemes (1.12) like, for example, the centred Euler scheme
become unstable.

The best way to avoid error accumulations in (1.12) is to choose 3¢ = 1,
p1=---=fBs =0, e.g. to use the BDF.

For higher indexes u > 1 we only discuss the BDF. In index-2 parts such
as (1.7) we have

18
— ; . = t
3 JE=O QW e+ Wiyg s1(te) Ci>s

wa g = S2(te)
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thus
18
Wig = sl(tg) 3 ;)aj32(tg_j) >,
wae = 83(te)
if we assume exact starting values wa; = sa(t;), 1 =0,...,s—1 are available.

Inexact starting values as well as round-off errors in the linear equation (1.9)
to be solved for x4 give rise to a weak instability, i.e. the errors are amplified
by 1/h. However, fortunately, only the component w ¢ is affected by this.

Analogously, in index-3 parts, such as e.g. (1.8), we have
1 8
B Z ajwe—; + Wye =8 (te)
=0
£>s.

1 S
E Z QW3+ Woe = 82(tg)
J=0

w3e = s3(t)

Using these formulae for ¢ > 2s together with exact values w3; = s3(t:),
i=0,...,28 — 1, wy; = 82(t;), i =0,...,8 — 1, would lead to

1 8 1 8 8
wie = si1(te) — 5 Y aysa(te-;) + 7 D ;) aiss(te-js)
=0 =0 =0

1 §
wae = sate) — 7 > ajss(te—;)
7=0

w3y = 83(te)

Of course, in practical computations 2s exact starting values are not avail-
able, thus the components w; ¢ and wy, will be affected by instabilities of
the type 1/h? and 1/h, respectively. It should be mentioned that these in-
stabilities are due to the differentiations arising in (1.1), and in this sense
they are very natural.

Now, let us turn shortly to implicit Runge-Kutta methods for (1.1). Given
the Runge-Kutta tableau

c| A
we have to solve the system
| 87
8
AX!+B(ze-1 +h Y 0y X)) = qlte_1 +cih)  i=1,...,s, (1.13)
j=1
and then to compute
L]
Ty = Tg-1 +h2ﬂjXJ/~. (1.14)

Jj=1
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Again we use the transformation to the Kronecker normal form. This gives

Ui' + W(ug—1 + hz a,'jU;) = p(te—1 + cih), 1=1,...,8, (1.15)
j=1

s
Ug = Up_1 +h2ﬂjUJ/-, (1.16)
Jj=1

8
IV +ve1 +h Y iV =r(tey + k),  i=1,..,s, (117
=1

8
Vg = Vp—1 + hZﬂJ‘/; (118)
i=1
Clearly, (1.15) and (1.16) are nothing else but the given Runge-Kutta meth-
od applied to the regular inherent ODE (1.4). This part does not cause any

new difficulties.
Equations (1.17) and (1.18) decouple further according to the Jordan
chains in J (cf. (1.6)). For index-1 chains (y = 1) we simply have

8
we—1+h Z a,-jVV]{ = 8(tg—1 + c;h), i=1,...,s, (1.19)
j=1
8
we=we_1+hY BiW]. (1.20)
Jj=1

Now it becomes clear that we have to use a nonsingular Runge-Kutta matrix
A to make the system (1.19) solvable with respect to W{,..., W/. Denoting
the elements of A~! by &;;, we obtain

8
we = we1+ Y B Y djk(r(te—y + ckh) — we_y)

8

j=1 k=1
8 3
= owe—1+ B Y &jgr(te-1 + cxh)
j=1 k=1
with

e=1-pTA"1(,..., )T (1.21)
Recall that w, should approximate w(t;) = r(t;). Obviously, |o| > 1 would
yield an unstable scheme. Choosing 8; = a,;, j = 1,...,s, in the Runge-

Kutta tableau we obtain ¢ = 0 and wy = r(t;—1 + csh).
Thus, the so-called IRK (DAE) (cf. Petzold (1986), Griepentrog and Marz
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(1986)), i.e. s-stage Runge-Kutta methods, with
Bi = ogj, i=1,...,s, cs=1, A nonsingular, (1.22)

appears to be an appropriate tool for handling index-1 equations (1.1).
Next we investigate what happens with such a method if (1.5) contains
an index-2 block (1.7). As earlier, we compute

wa e = 82(te—1 + h).

1SN 1<,
wie = 81(te—1+h)— h > Gy ksa(tes +cxh) + B > by pwa ey

.1
s1(te—1+h) = Gsky (s2(te-1 +cph) — sa(te-r))  (1.23)
k=1

assuming the starting value wa¢_1 to be consistent, i.e. wa 1 = s2(ts—1).
If the Runge-Kutta method has an inner order of consistency > 1 we
know the condition

8
Z Ggrcr =1
k=1

is satisfied. Thus, (1.23) with a consistent starting value actually provides

an approximation of wy (t¢) = s(t¢)— s5(t;). However, we do not usually have

consistent starting values, and the errors are unstably amplified by 1/h.
Let us summarize what has been pointed out in this section:

1  Singular systems (1.1) of index u are mixed regular differential equa-
tions (1.4) and equations (1.5) including u — 1 differentiations.

2 Consistent initial values are not easy to compute in practice.

3  Integration methods handle the inherent regular ODE (1.4) as ex-

pected.
4  To avoid singular coefficient matrices in the linear systems to be solved

per integration step we should use implicit multi-step methods (3¢ # 0)
and nonsingular Runge-Kutta matrices A. Moreover, there have to be

additional conditions to ensure stability in the related index-1 parts.
5  Errors in the starting values are amplified by A!~* in the best case, but

only the components v; are affected.

The decoupled system (1.4), (1.5) and also (1.10), (1.11) respectively
(1.15)—(1.18) lead us to the idea that it would be nice to allow different
approaches for the parts (1.4) and (1.5), respectively, say a possibly explicit
higher order method for the regular ODE (1.4) and a BDF for (1.5).

Of course, this should be done without knowing the canonical normal
form. Furthermore, we regard the linear constant coefficient equation (1.1)
as the simplest model with which to give some hints as to how to proceed
with more general equations.
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2. Characterizing DAEs
2.1. Linear equations with variable coefficients

Consider the linear equation
A(t)a'(t) + B(t)z(t) = q(t), (2.1)

where A(-), B(-) : Z — L(R™) are continuous matrix functions on the inter-
val T C R, and A(t), t € 7, is singular.

The first classification of these singular ODEs was given by C. W. Gear
and L. Petzold (1984).

Definition (2.1) is said to be a global index u DAE if there exist regular
matrix functions E € C(Z,L(R™)), F € CYZ,L(R™)) so that multiplying
(2.1) by E(t) and transforming F(t)~1z(t) = Z(t) leads to the decoupled
system

[ 3 3 ]"E'(t) + [ Wo(t) (} ] &(t) = E(t)q(t), (2.2)

where J is a constant nilpotent Jordan block matrix, ind(J) = p.

Unfortunately, except for some interesting case studies, this Kronecker
canonical normal form (2.2) as well as the transforms E, F are not available.
Moreover, no way is known for relating this form to nonlinear equations.
This is why we are looking for another way to characterize (2.1).

Denote by N(t) := ker A(t) the null space of A(t), t € Z, and assume
this null space to be smooth, i.e. that there exists a matrix function Q €
CY(Z,L(R™)) which projects R™ onto N(t) for each ¢t € T (that is Q(t)? =
Q(), imQ(t) = N(2)).

If DAE (2.1) has a global index y, then e.g. Q(t) = F(t)diag(0,Q ;) F(t)!
represents such a projector function, where @ ; denotes a projector onto
ker J. In particular, for global index-1 equations (2.1), we simply have
J =0, hence Q(t) = F(t)diag(0, I)F(t)!.

In the following we let @ denote any such a projector function, and we
also use P(t) :=I-Q(t),t€T.

Since A(t)Q(t) = 0, we may insert A(t) = A(t)P(t) into (2.1), and rewrite
it as

A{(Pz)'(t) - P'()=(t)} + Bt)x(t) = q(t)
or
A(t)(Pz)'(t) + (B(t) — A(t)P'(t))z(t) = q(t). (2.3)

This makes clear that, in general, we should not ask for C! solutions of (2.3)
and (2.1), respectively, but for solutions belonging to the function space

Cl := {z € C(T,R™) : Pz € C}(T,R™)}.
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Example A(t) = diag(I,0) immediately leads to
O+ Butn(0 + Balhealt) — o) | 2.0
Ba1(t)z1(t) + Baz(t)z2(t) = qo(t) [’ '

which is called a semi-explicit DAE.
Obviously, it is neither necessary nor useful that o € C1!
Next we reformulate (2.3) to

A(Pz) + (B — AP')(Pz +Qz) = g
and then to
{A+(B-AP)Q}P(Pz)' + Qz) + (B — AP)Pz =q. (2.5)
Denote A; := A+ ByQ, By := B— AP’ and ask whether A;(t) is nonsingular
for all t € Z. If it is so, we multiply (2.5) by PAI'1 and QAI'I, respectively.
This yields the system
(Pz) — PPz + PA{'BoPx = PA7q (2.6)
Qz+ QAT 'BoPr = QA7lg, (2.7)
which decomposes into a regular explicit ODE for the nonnull space compo-
nent Pz and a simple derivative-free equation for determining the null space
component QQz. The inherent ODE
w' — P'Pu+ PAT'Byu = PAT!q (2.8)
has the property that solutions starting in imP(¢) for some ¢y € Z remain
in imP(t) for all ¢t € Z, since multiplying (2.8) by Q yields
(Qu)’ - Q'Qu=0.
Consequently, if for any ¢ € C(Z,R™), up € imP(tg), we denote the solution
of (2.8) passing through (uo,tp) by u € C!, we obtain, with
z = u-QA7'Bou+ QAT'q (2.9)
(I - QAT'Bo)u + QATq,
a C}, solution of (2.1).

To be sure to address the initial condition to the respective component,
we may state as follows

P(to)(z(to) — :L'O) =0. (2.10)
This means that u(tg) = P(tg)z(to) = P(tg)z?, i.e. P(ty)z° plays the role of
up. Now 2% € R™ can be chosen arbitrarily. In general, z(to) = z° cannot

be expected to hold for the solution z(-) of the initial value problem (IVP)
(2.1), (2.10), but

z(to) = (I — Q(to) A1(to) " Bo(to)) P(to)z® + Q(to) A1(to) *qlto).
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Lemma 2.1 Let A,B,Q € L(R™) be given, N := ker A # {0}, Q% = Q,
im@Q =N, §S:= {2z € R™: Bz € imA}.
Then the following three statements are equivalent:

(i) R"=NeoS
(ii) ind(A,B) =1
(iii) A + BQ is nonsingular.

Moreover, if G := A + BQ is nonsingular, then G"!BQ = Q, G~14 =
I — @, and QG 1B represents the projection onto N along S.

Proof. The first part is given in Griepentrog and Marz (1986), Theorem
A.13. Here we check the second part only.
Trivially, G-'BQ = G~(A+ BQ)Q = Q,

GlA=GTAI-Q) =G (A+BQ)I-Q)=1-Q.
Then, we have for Q, := QG~1B
Q) = QGT'BQGT'B=QG'B=Q,,
QQ = QG'BQ=Q, ie imQ,=imQ=N,
and @,z = 0 implies
G 'Bz=(I-Q)G !Bz,
thus Bz = G(I — Q)G 1Bz = AG"'Bz € imA. O

Lemma 2.1 applies to our DAE in the following sense.
In addition to N(t) =: Ny(t) introduce

So(t) = {z €R™: By(t)z € im A(t)}

= {2 €R™: B(t)z € im A(t)}. (2.11)
By Lemma 2.1, our matrix A;(¢) is nonsingular if and only if
So(t) & No(t) =R™. (2.12)
If (2.12) holds, then
Qs(t) == Q(t)A1(t) " Bo(2) (2.13)

projects R™ onto Np(t) along Sp(t).

Definition The DAE (2.1) is said to be indez-1 tractable (or transferable)
if A, B are continuous, A(t) is singular but has a smooth null space, and
A;(t) remains nonsingular for all ¢t € Z.

Theorem 2.2 Let (2.1) be transferable. Then

(i) For all ¢ € C(Z,R™), z° € R™, the IVP (2.1), (2.10) is uniquely solvable
on C}(Z,R™).
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(ii) So(tg) is the set of all consistent initial values at time ty € T for the
homogeneous equation, all IVPs Az’ + Bz = 0, z(to) = z¢ € So(to) are
uniquely solvable.

Proof. It only remains to check the consistency of zg € So(tp). In fact,
solving the IVP Az’ + Bz = 0, P(to)(z(to) — o) = 0, zo € So(to), we derive

z(to) = (I — Qs(t0)) P(to)zo = (I — Qs(t0))T0 = Zo.
0
Remarks
1  The semi-explicit system (2.4) is transferable if B;3(t) remains nonsin-

gular. Here we simply have

Q =diag(0,1), A1=A+BQ= [ I B ]

0 By
and, furthermore,
0 0
Qs = [ 3521321 I ] ’
2  Equation (2.2) in Kronecker canonical normal form is transferable if
J + @y is regular, that is if p = 1.
3 It may be easily checked whether each DAE (2.1) which has a global

index p = 1 is also transferable, whereby even @, is continuously dif-
ferentiable,

Q, = Fdiag(0,)F 1.
Theorem 2.3 Supposed (2.1) is transferable, the system

A(to)yo + B(to)zo = q(to)
Q(tg)zg +P (tg):(bgo —qz"()) =0 } (2.14)

is uniquely solvable with respect to zq, yo. ¢ is the fully consistent initial
value related to (2.1), (2.10), yo = (Pz)'(to) — P'(to)zo.

Proof. Rewrite the first equation of (2.14) as
A(to){yo + P'(to)zo} + Bo(to)zo = g(to)-
Rearrange this as
A1 (to){P(to)yo + P(to)P'(to)zo + Q(to)xo} + Bo(to) P(to)z® = g(to).
Now we decouple into

P(to)yo + P(to)P'(to)zo + P(to)A1(te) "' Bo(to) P(to)z®
= P(to)A1(to) 'q(to)



156 R. MARz

Q(t0)xo + Qs (o) P(to)z° = Q(to) A1(2) q(to)
and compare those with (2.6), (2.7), in order to obtain
Iy = x(tﬂ),
Yo = (Px)(to) — P'(to)x(to).

Finally, the matrix

Alto) Bl(to)
[ Qts) Plto) ] (2.15)

is nonsingular since A(tg) + B(to)Q(to) isso. O

Now, let us turn to nontransferable DAEs (2.1), that is to those DAEs
with a singular matrix A;(t).
Introduce new subspaces

Ni(t) = kerAy(t)
Si(t) = {z€R™:B(t)P(t)z € imA,(t)}
= {z€R™: By(t)P(t)z € imA,(t)}. (2.16)

and now assume that
Nl(t) 32} Sl(t) = Rm, teZ

holds. Choose Q1(¢) to be the projector onto N1(t) along Si(t), and let @
be continuously differentiable. Note that for B; := (By — A1 (PP,)")P

Si1(t) = {z € R™: B;(t)z € im(A1(¢))}
holds. By Lemma 2.1, the matrix
Az(t) == A1(t) + B1()@Qu1(t), teZ
becomes nonsingular and, finally,
Q1(t) = Qi (1) A2(t) ' Bu(t),
which implies that
Q:1(1)Q(t) =0, teZ, (2.17)

is true. As a consequence, the products P(t)P;(t), P(t)Q1(t) are also pro-
jectors. Hence, it makes sense to look for a decomposition r = PPz +
PQ1z + Qz of the solution. To this end, rewrite (2.1) again (cf. (2.5)) as

A(P(Pz) + Qz) + BoPz =g,
then as

A {(PPiz) + PQ,(Pz) + Qz} + (Bo — A|(PP,))Pz =gq
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and finally as
Ax{P,(PPiz) + PLPQ:(Pz) + P1Qx + Q1z} + BiPPiz = q. (2.18)
Multiplying (2.18) by PP, A5 1 QPA; 1 and Q145 ! respectively, and per-
forming some technical calculations we obtain the system
(PPyz) — (PP1)PPiz + PPiA;' B, PPz = PP Ay q (2.19)

~(QQis) +Qz = QPiA;'q—(QQ1)PQic
—{(QQ1 - QP) + QP1A; B} PPz (2.20)
Qiz = Qi145'q. (2.21)
Clearly, (2.19) represents a regular ODE for the component PPz, (2.21)

simply determines @1z, but to obtain the null space component Qx we have
to insert @1z = Q145 14 into the term (QQ;z), i.e. we have to differentiate

QQlAz_lq once.
Multiplying the ODE

u — (PP)'u+ PPi1A;'Biu = PP Ay Yq (2.22)
by I — PP; leads to ((I — PPy)u) + (PP)'(I — PP1)u = 0. Therefore,
u(to) € im P(to)Pi(to) implies u(t) € im P(¢)Py(t) for all t € T.

Example Consider the semi-explicit DAE (2.4) with B23(¢t) = 0 and assume
that Bo;(t)Bj2(t) is nonsingular. We have

ae =]y 720,

Si(t) = {( v ) ER™: le(t)u=0}.

Now (%) € Ni(t) N S1(t) implies v = —Bia(t)v, Ba(t)u = 0, that is v = 0,
u = (. Then, compute
0 = [ Bi12(B21B12) "By 0 ]
! —(Ba1B12)™'Bn 0|’
PP, = [ I- 312(326312)"1321 g } .

It should be mentioned that this kind of equation is often discussed, and it
is said to be an index-2 DAE in Hessenberg form. The simplest system of
this type is (cf. (1.7))
i +re=q }
T1=q2 |’

Let us turn back to the general equation (2.1). If A,(t) is also singular,
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we proceed analogously using new subspaces and projectors. More precisely,
for given A, B € L(Z, L(R™)), we define the chain of matrix functions
Ao = A, Bo =B — AP’,
Aiy1 = A+ BiQ, (2.23)
Biy1 = (Bi— Aii(PoPr---Pi1) )R, 120,
where P; = I — Q;, and Q,(t) projects onto N;(t) := ker A;(t),t €Z, j > 0.
Introduce further
S;j(t) = {z€R™:Bj(t)z € imA;(t)}
= {z€R™:B;_1(t)P;-1(t)z € imA;(t)}, j=>1
Definition The ordered pair {A, B} of continuous matrix functions (and
also the DAE (2.1)) is said to be index-y tractable if all matrices A;(t),

teZ,j=0,...,u—1, within the chain (2.23) are singular with smooth null
spaces, and A,(t) remains nonsingular on Z.

Theorem 2.4 If the DAE (2.1) has the global index u, then this DAE is
also index-u tractable.

Proof. We refer to Hansen (1990), where this assertion is verified by means
of a very complicated induction. 0O

Theorem 2.5 Let {A, B} be index-u tractable. Then the IVP (2.1),
Py(to) ... Pu—1(to)(z(to) —2°) =0 (2.24)

is uniquely solvable on C}(Z,R™) for any given z° € R™ and sufficiently
smooth right-hand sides g, in particular for all ¢ € C*~1(Z,R™).

Proof. The assertion follows from the previous explanations for 4 = 1 and
pu = 2. It is proved in Marz (1989) for u = 3, and for u > 3 in Griepentrog
and Marz (1989) and Hansen (1989). O

Remark The solution of an index-u-tractable DAE, u > 1 decomposes in
the following way:

z=PD... P, 1z + P... P“_2Q“_1.'L‘ + -+ Py@Q1z + Qoz.
Thereby Py ... P,_1x € C* solves the inherent regular ODE,
F... P“_zQ”-lw ect

is given by the ‘algebraic’ part. The components Py ... P, ;jQu_j+1z € C*
include derivatives of order j — 2 for j = 3,...,u and, finally, Qoz € C
includes a (i — 1) derivative.

When investigating discretizations we are often interested in compact in-
tervals Z, and in the properties of the maps representing our IVPs and
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BVPs. Let Z := [t,T], and {A, B} be index-u tractable. Let I, :=
Po(to) - - - Py-1(t0), M, :=im(II,) € R™. Then introduce the linear map

L:CN(IZ,R™) - C(T,R™) x M, =:Cx M,
by defining
Lz = (A(Pz)’ + Boz,I1,z(t0)), x € CH(Z,R™). (2.25)
The function space C},(Z,R™) completed with its natural norm
Izl := llzlloo + (P2)'llo, = € Ch,

becomes a Banach space. Note that the topology of this space is independent
of the choice of projector function.
The map £ is bounded, but does a bounded inverse exist?

Theorem 2.6 Let {A, B} be index-u tractable, T = [tg,T]. Then
(i) it holds that

pu-1 ]
lzll < K {Z lg9 |0 + |Hum(t0)|} (2:26)
Jj=0

for all solutions z corresponding to sources g € CH+YZ,R™);

(ii) the map L is injective;

(iii) £ is surjective for 4 = 1, but for 4 > 1 im(L) becomes a nonclosed
proper subset within C x M.

Proof. The first assertion is obvious for x =1 and p = 2 (cf. (2.6), (2.7)
respectively (2.19)—(2.21)). In general, it can be verified by decoupling the
DAE (Griepentrog and Mérz 1989, Hansen 1989).

The injectivity of £ is given by Theorem 2.5. Moreover, for p = 1,
Theorem 2.2 provides solvability for all continuous right-hand sides g, i.e.
im(L) =C x M,,.

In the higher index cases, that is for 12 > 2, we have to assume that certain
components of ¢ are continuously differentiable for solvability. However, the
set of these functions is not closed in the continuous function space, but it
is a nonclosed proper subset. O

Remarks

1  Inequality (2.26) is somewhat liberal. It could be stated more strictly
but would take immense technical effort. To do this by means of the
decoupling technique, those parts of ¢ which have to be differentiated
have to be described precisely. In particular for g = 2, the system
(2.19)-(2.21) makes this transparent. There we have

im(£)={qeC: Q1A2_1q € C'} x My,
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and
Izl < K{llglloo + (@145"9) lloo + [Maz(to)|}- (2.27)
2  The inequalities
p—1
lzllo < K {Z g lloo + Iw(to)l} (2.28)
i=1

are used in Hairer et al. (1989) to define the so-called perturbation
index. In our framework, (2.28) as well as its sharper form (2.26)
appear as secondary effects.

Corollary 2.7 If u = 1, then the inverse of £ is bounded, and £ is a
homeomorphism. If 4 > 1, then the inverse of £ becomes unbounded.

Proof. Since L is acting in Banach spaces, this assertion follows immedi-
ately from Theorem 2.6. O

In other words, higher index DAEs (1 > 1) become ill posed in Tichonov’s
sense in the given setting, i.e. the solutions do not depend continuously on
the inputs. This has bad consequences for the numerical treatment. The
unboundedness of £7! makes the related discretized maps unstable.

At this point it should be recalled that the explanations in Section 1
concerning integration methods confirm the expected instability. On the
other hand, in certain cases they cause us to be optimistic as they are only
weak instabilities and we are to be able to handle them.

We conclude this section by emphasizing once more that the described de-
coupling of (2.1) should be understood as an appropriate technique for
analysing large classes of DAEs and the precise behaviour of numerical meth-
ods.

It should also be possible to compute the projectors Q;(t) and matrices
A;(t) at certain points t in order to formulate the initial conditions and orga-
nize a numerical index-testing. However, in general the decoupling technique
is not aimed at representing a numerical method.

2.2. DAEs as vector fields on manifolds
The most frequently used notion of an index of a general nonlinear DAE
f',z,t) =0 (2.29)

is the differentiation indez, which goes back to the work of S.L. Campbell
on linear DAEs with smooth coefficients (e.g. Campbell (1987), Brenan et

al. (1989)).
Assuming f and the respective solutions to be smooth enough we form
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the system
. f(@',z,t) = o ‘
a'if(x,)m7t) = 517]((17’,56, t)(L‘” +..-=0
. > (2.30)
a* ! . 4 ’ (u+1)
M (E,.’L‘,t) = %Tf(xamat)x# +=0)
by differentiating u times. Consider (2.30) as a system in separate dependent
variables z’, 2", ..., z#*+Y with z, ¢ as independent variables.

Definition The DAE (2.29) has the differentiation indez p if there exists
an integer p such that system (2.30) can be solved for z’ = H(z,t), H con-
tinuously differentiable, and p is the smallest integer having this property.

We do not recommend carrying out this procedure in order to obtain the
underlying regular ODE z’ = H(z,t) in practice. This ODE does not give
a good reflection of the qualitative behaviour of the original equation.

Example (Fiihrer and Leimkuhler, 1989) The inherent regular ODE of the
DAE
T -z2+azi=0
20— azt =0 (2.31)
is i = 0, and the origin represents a stable equilibrium (all solutions are
stationary here). By differentiating once we formally obtain the system

i —z2+az?=0

zo —az? =0

zf — x5 + 2az32] = 0
zH — 2az12; =0

)

which leads to

Ty = 29 — ax? }
rh = 2ax;(z9 — ax?) ° (2.32)

but now the origin is no longer stable.
System (2.30) suggests the idea of defining a compound function or a
derivative array

( f(yl,w,t)

9
3 WLty + -
Fu(fu i) = | | : (2.33)

8
| 5 W T g 4
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where §, := (y7,. .. ,y;‘f_,_l)T € Rs+)m,
If we assume the Jacobian H,(,,z,t) := 0F,(y,,z,t)/8y, has constant
rank, we can form the constraint manifold of order

S, = {(z,t) € R™ x R : F,(, ,t) = 0 for a §j, € RW+Im}
as well as

My(z,t) = {§, € R#D™ . F(g,,z,t) =0},
Ml}(z, t) = {y1 ER™:§, € M,(z,t)} for (z,t) € S,.

Definition (Griepentrog, 1991) f € C**1(R™ x R™ x R,R™) is called an
indez-pu mapping if S,, is nonempty and M,(t, z) is a singleton for all (¢,z) €
Sy, and if u is the smallest integer with these properties.

Clearly, DAE (2.29) has the differentiation index p if f is an index-p
mapping. However, now it becomes transparent that this DAE represents a
vector field defined on S, namely

v(z,t) =y € Ml}(z, t) for (x,t) € S,.

By definition, f(v(z,t),z,t) = 0 holds for (z,t) € S,. The solution of each
Ivp
Z'(t) = v(z(t),t), (z(to),t0) € Sy (2.34)

evolves in the manifold and solves the DAE. More precisely, the following
assertion is proved in Griepentrog (1991).

Theorem 2.8 If (2.29) is an index-p DAE, then all solutions proceed in
the differentiable constraint manifold S,. A vector field v(z, t) is defined on
S, and has the following properties:

(i) v is continuously differentiable; and
(ii) the solutions of (2.29) are identical with the solutions of the IVPs (2.34).

Remark Griepentrog (1991) describes both the manifold S, and the vector
field v in detail by means of the rank theorem. These investigations are
closely related to the differential-geometric concepts of regular DAEs in Re-
ich (1990) and Rabier and Rheinboldt (1991). However, these studies are
still in an early phase, but they are very promising and are aimed at making
the results of differential geometry applicable to numerical treatment.

Return shortly to the trivial example (2.31). Now, it appears to be an
index-1 equation, whereby

Sy :={(z,t) e R x R : 23 — ax? = 0},
and M}(z,t) = {0} for all (z,t) € ;.

We would like to direct attention to an essential detail of this index defini-
tion as well as of Theorem 2.8, namely the condition that the Jacobian of the
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compound function (2.33) has constant rank. If this property is lost, differ-
ent singularities may arise, as is illustrated by the next two easy examples,
which model certain RC circuits (Chua and Deng, 1989).

Examples Consider the DAEs

tf—z3=0, z;-23=0 (2.35)
and
) +z2=0, z;—z3=0. (2.36)
Axl A}wl
.’E;z 3:32

In both cases the Jacobian Hy(71,z,t) = dF1(f1,z,t)/8%1 has constant
rank 3 for z9 # 0, but it suffers from a rank deficiency at o = 0. In any
case, the origin becomes a stationary solution. Besides the trivial solution,
(2.35) has the solution z1(t) = (2t)%/2, z5(t) = (3t)'/2, which starts at the
origin. On the other hand, (2.36) has no solutions coming out of the origin,
but z1(t) = (1 — 2t)%2, z(t) = (1 — 2t)1/2 starts at (1,1) for t = 0, and
ends, for t = %, at the origin.

2.8. Many open questions are left

What do the differentiation index and the tractability index have to do with
each other. At first glance seemingly nothing. Let us consider the matter in
the case of homogeneous linear DAEs in Kronecker canonical normal form
(1.4), (1.5). In this case we obtain

I 0 00 u W 0

0 J OO v 0 I u
Fl(yl,yg,.’l:,t) = W o0 I 0 u' + 0 0 { v ] y

o I 0 J v 0 0

Whel'e
u' U" u
y1==[v,] y2=1[v//] x::[v]’

S :={(z,t) e R™ xR : v € imJ},
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and M{(z,t) is a singleton if and only if
JUV=0, v+Jv =0

implies v’ = 0, that is J =0, indJ = 1.

In general, for linear DAEs (2.1), the different index notations are related
to different smoothness requirements with respect to the coefficients A, B,
g; however, they are identical in essence.

Theorem 2.9 Each linear DAE (2.1) with a differentiation index pp also
has a global Kronecker normal form index yx = up. Each DAE (2.1) having
a global index uk is tractable with index ut = pk.

For the technically expensive proof we refer to Hansen (1990), Griepentrog
and Marz (1989) and Griepentrog (1991).

For linear equations, the concept of index-u tractability seems to be the
most general one. But, how is the index-y tractability to be defined for non-
linear DAEs? First, this concept is based upon another notion of solution,
which can also be reasonably applied to nonlinear equations (2.29) under
certain assumptions.

Assumption 2.10 Let the function f € C(G,R™), where G = R™ x D X
I CR™ x R™ x R is an open set and f,(y,z,t), f,(y, z,t) € L(R™) exist for
all (y,z,t) € G, and f,, f; € C(G, L(R™)).

Suppose that the null space of f,(y,z,t) is independent of (y,z), i.e.

N(t) := ker f,(y,2,t), (y,2,t) €G. (2.37)

Let N(t) be smooth in t. Let Q@ € C}(Z, L(R™)) denote the corresponding
projector function onto N and set P:=1 — Q.

In most applications we know, the null space N(t) is kept constant.
Due to Assumption 2.10, the identity

f(y’ z, t) - f(P(t)y7 z, t)

1
= [+ -9)POY2HQ@ds =0, @z, €G
0

becomes true. Consequently, (2.29) may be rewritten as
f((Pz) (t) — P'(t)z(t), z(t),t) = 0, (2.38)

hence the function space to which the solutions of (2.29) should belong again
appears to be

CJb(IOsRm) = {x € C(IOsRm) : Pz € 01(1'07Rm)}7

where Zg C 7 is a certain interval.
This space seems to be very natural. If z. € Cx(Zo,R™) is any given
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function whose trajectory remains in G, then the equation linearized along
z.(t) has continuous coefficients

At = f,E®), Bu(t) = £2(CH)),
() = ((Pz.)'(t) = P'(t)za(t),za(t),t) € G,
and the null space of A.(t) is again N(¢).

It should also be mentioned that the given nontrivial solutions of the
examples (2.35) and (2.36) do not belong to

Cl([oa 00)7 Rz)a
but to
Cx([0,0),R?).

Does it make sense to define the notion of index-y tractability via lin-
earization?

Definition Suppose (2.29) satisfies Assumption 2.10, and . € C}(Zo,R™)
is given, T, := {¢(t) : t € Ty} € G. The DAE (2.29) is said to be transferable
or indez-1 tractable around z, if the pair {A., B,} is index-1 tractable.

Lemma 2.11 {A,, B.} becomes index-1 tractable if and only if the matrix

Gy, z,t) := fy(y,z,t) + f2(3, 2, 1)Q(t) (2-39)
remains nonsingular for all (y, z,t) from a neighbourhood N C G of T.,.

Proof. Let {A., B.} be index-1 tractable, that means that A; := A,+(B.—
A.P"Q is nonsingular, then G, := A, +B.Q = A1 +A.P'Q = A;(I+PP'Q)
is also nonsingular. Next, G(y, z,t) becomes nonsingular for all (y, z,t) € T,
because of

G.(t) =G(®), tel

Since G depends continuously on its arguments, there is a neighbourhood
N of 7, where G(y, z,t) remains nonsingular. Now the assertion is evident.
0

Theorem 2.12 Let z. € C}([to, T],R™) solve the DAE (2.29). Let (2.29)
be transferable around z.. Then, for any given g € C([to, T],R™), z° € R™

the IVP
f(@'@),z(t),t) = 'q(t)
P(to)(z(to) — z°) 0 } (2.40)

is uniquely solvable on C}([to, T), R™), provided that ||q||oc and |P(to)(z° —
z.(tg))| are sufficiently small.
Moreover,

lz — 2]l < K{llglloo + [ P(to)(® — z.(to))I}
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is valid with constant K.
Proof. Denote shortly C} := Ck([to,T],R™), C = C([to,T],R™). For
z € Ok, g € C, 8 € im(P(tp)) with
Iz -zl <o, llallo<e, 85 <0,
Bx := P(to)z.(to), o >0 sufficiently small,

we define the map F by
F(z,9,8) = (f((Pz) () = P'()=(),2(:),-) — 4(-), P(to)x(to) — B)-
F maps a ball within C}; x C x imP(tg) into C x imP(to), it is continuously
differentiable and, in particular for z € C},,
F(24,0,8:)z = (A.((P2)' — P'z) + Buz, P(to)2(to)).

holds. Trivially, F(z.,0,8.) = 0. Due to Corollary 2.7 (cf. also Theo-
rem 2.2), F.(z4,0,0,) is a homeomorphism, hence it remains to apply the
Implicit Function Theorem. O

Remarks

1  To obtain the fully consistent initial value z¢ := z(to) related to the
IVP (2.40) the system

f (o, o, t0) — q(to) =0 }
P(to)(zo — 2°) + Q(to)yo = 0

will be helpful (cf. Theorem 2.3). The Jacobian of this system is
nonsingular because of the index-1 requirement.

2 Let (yo,Zo,t0) € G be given, and let G(yp,xo,to) be nonsingular. Re-
write f(y,z,t) = f(w,u + Q(t)w,t) =: f(w,u,t) where new variables
w = P(t)y + Q(t)z, u = P(t)z are mtroduced

Clearly, since f(wo, uo,%0) = 0, and f,(wo,uo,t0) = G(yo,%o,%)

is nonsingular, due to the Implicit Function Theorem there exists a
continuous function w(u,t) with continuous partial Jacobian w,(u,1),
satisfying f(w,u,t) = 0. Then, it is easy to check that (cf. (2.9))

z(t) = u(t) + Q(t)w(u(t),t) (2.41)

represents a solution of f(z’,z,t) = 0 passing through (z¢, o), whereby
u denotes the solution of the inherent regular IVP

u'(t) — P'(t)u(t) = P@E)YI + P'(t)w(u(t),t), (2.42)
’u(to) = P(to)z‘o.

3  Supposing that G(y, z,t) remains nonsingular for all (y,z,t) € G, we
immediately know that

S1 = {(z,t) e DxT: f(y,z,t) =0 for ay € R™}
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is the manifold of consistent initial values. Comparing this with the
matters related to understanding DAEs as vector fields on manifolds
we feel the smoothness demanded there to be difficult to realise.

4 In our examples (2.35), (2.36) we compute G(y, z,t) to be equal to

1 -1 . 1 1

0 —323 respectively 0 343 |
This shows that the transferability matrix may be used as a tool for
detecting singularities numerically.

Unfortunately, the situation becomes much more complicated for higher
indexes. According to Theorem 2.6 and Corollary 2.7 linear DAEs with an
index-p-tractable coefficient pair {A., B.}, 4 > 1, result in ill posed IVPs,
i.e. they have discontinuous inverse mappings in the given topologies. Now,
the standard arguments used in Theorem 2.12 no longer apply because the
derivative F,(z.,0, 3,) does not have a continuous inverse.

By means of the following example we want to elucidate that Theorem
2.12 cannot be saved for the index-2 case even if P(to)P,(¢o) is appropriately
used instead of P(tg) (cf. Theorem 2.5), and if only g from C! is admissible.

Example (Chua and Deng, 1989; Mirz, 1991) Consider the system
x’l = z%, zh = —x3, a:g + zoxz + 1 =0. (2.43)
z.o(t) = (2(% +1)3,-3(% + 1)%, § + 1)T solves this DAE, and

100 0 0 -it-2
A=|010|, B.ty=|0 0 1
000 1 +1 0

form an index-2-tractable pair {A., B.}. However, e.g.,
z(t) = (2+t,-3-¢,1)T

represents another solution, and z,(0) = z(0) holds, i.e. certain bifurcation
phenomena arise. The respective matrix (2.39)

10 —2x3
Gly,z,t)=10 1 1
0 0 x2+ 323

is nonsingular for 2+ 3z3 # 0. Thus, equation (2.43) represents an index-1
DAE everywhere, where z2 + 3z2 # 0 holds. The whole thing should be
understood as an index-1 DAE with a singularity at z2 + 3z% = 0.

We might possibly overcome these problems by making the following def-
inition: The nonlinear DAE (2.29) is called index-u tractable around z, if
for allz € {% € C}, : | —z.|| < g}, o sufficiently small, the respective pairs
{A, B} are index-p tractable. However, how can this be checked?



168 R. MARz

Finally, we are also interested in conditions that can be treated numeri-
cally, such as those provided by Lemma 2.11 for instance. So far, statements
have only been successfully made for index-2 equations (cf. Lemma 3.5) and
for special index-3 equations (e.g. Marz, 1989). In these cases it has also
been successfully proved that the differentiation index and the tractability
index coincide identically except for smoothness.

On the other hand, the approach of considering higher index DAEs as
differential equations on manifolds seems to be easier to grasp and handle.
In particular, this is true for DAEs with a special structure, e.g. those of
Hessenberg form. In this respect, interesting results are to be expected.
However, a uniform analysis of DAEs with natural smoothness is still out of
sight.

3. Numerical integration methods
3.1. General remarks on the BDF

The integration method used most frequently for regular as well as for sin-
gular implicit equations

f@'(#),2(t),z(t)) =0 (3.1)

is the BDF. It is well known that there are powerful codes like DASSL (cf.
Brenan et al. (1989)) which treat large classes of DAEs well.

On the other hand, the following example shows that BDFs may fail even
in very simple cases. Thus, in this section we try to clarify the related
problems together with possible ways out.

Example The DAE

010 1 0 0
[0 nt 1Jz'(t)+[0 n+1 O]Z(t)=q(t) (3:2)
0 00 0 nt 1
has global index-3 for all parameter values n € R. The leading coefficient
matrix also has constant null space and constant image space. Table 1 shows
results generated by BDF's with different constant step-sizes h and consistent
starting values for parameter values n = 0, —0.5 and 2.0, respectively.
The exact solution is

z1(t) = e 'sint, z3(t) =e Zsint, x3(t) =e *cost,

and [0, 0.1] is the integration interval. The absolute errors at ¢t = 0.1 arising
in the components of the solution belonging to the null space ker A(t) and
the other one are given separately.

Note that for 7 = 0 we have a linear constant coefficient equation as
discussed in Section 1. Obviously, the null space component is particularly
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Table 1

n=-05 n=0 n=290
hx | Pz | Qo | Pt [Qz| Pz | Qo
BDF,
252 | 3.-2 340 | 34 1 4-3] 14 5.-2
313 347 | 24+10| 56 | 6.-5 | 1.-5 2.-5
784 | 1.443 | 3.446 | 3-7 | 4-6 | 1.6 | 2.6
394 — — | 8.8 |16 2-7 | 5-7
194 | — — | 2-8 [2-7| 6-8 | 1.7
9.7-5 —_ — 5-9 19-9| 1.-8 3.-8
BDF3
2.5-2 — — 1-5 | 2-2] 1-3 8.-2
3.1-3 — — 3-8 | 1-7| 34 1.-2
7.8-4 — — 4-1012-9] 1-1 1.42
3.9-4 — — 5-11 | 1.-8{ 343 | 4.4+6
1.9-4 — — 5-12 | 3.-8 | 6.4+12 | 2.+16
9.7-5 — — 9-13 { 1-7 ] 1432 | 1.436
BDF,
3.1-3 — — 2.-13 1 3.-9 — —
7.8-4 — — 5.-13 | 2.-8 - —
3.94 — — 4-12 | 3.-8 — —_—
1.9-4 — — 2-12 | 2.-7 — —
9.7-5 — — 4.-12 | 4.-6 — —
(0 =1.-16)

affected by round-off errors. Furthermore, order expectations do not become
true in practice.

Before we investigate the BDF applied to DAEs (3.1) we describe this
class of DAEs in more detail. Assume DAE (3.1) satisfies Assumption 2.10
and, in particular,

N(t) :=ker f/(y,2,t), (y,z,t)€G, (3.3)
Let @ € CY(Z,L(R™)) denote the corresponding projector function onto

N, P := I — Q. Recall that Assumption 2.10 allows equation (3.1) to be
rewritten as

F(P=)'(t) ~ P'(t)x(t), z(t),t) =0, (3.4)

thus the function space to which the solutions of (3.4) should belong again
appears to be

CY(Zo,R™) := {z € C(Zy,R™) : Pz € C1(Zy,R™)},
where Iy C 7.
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We now ask how integration methods approximate solutions of (3.4) and
(3.1). For this purpose, we assume here that solutions exist, say on the
interval Ty = [to,T). However, it should be mentioned once more that
a comprehensive analysis of nonlinear DAEs is only in its infancy. Very
interesting problems remain to be solved. In particular, solvability is closely
related to the description of the set of consistent initial values.

Assume z, € C}, := C}([to, T],R™) solves DAE (3.1). Let B(z.,0) C C&
denote a small ball around z, within C}, such that z(t) € D for t € [to, T},
and for all z € B(z., g). Introduce the map

F : B(z+,00) € CY, — C :=C([to,T))
by means of

(Fz)(t) = f((Pz)'(t) — P'(H)z(t), 2(t), 1),
t € [to,T), = € B(zs, 00)- (3.5)

The map is continuously differentiable; and its Frechet derivative at z, is
given by

(F'(z4)2)(t) := A.(t)((P2)'(t) — P'(t)2(t)) + B.(t)2(2),
t € [to, T), 2 € Ck, (3.6)

where

At) = f (L), Bu(t) := £fz(¢(2)),
¢@®) ((Pz.)'(t) = P'(t)zx(t), 24 (1), 1).

Let the interval [tg, T] be partitioned by
mitp<t1 <.---<ty=T.
Denote by h, h the maximal and minimal step-sizes of 7, respectively, and

hj :=t; —tj_1. Given starting values zy,...,T,—1, we apply the variable
step-size BDF to (3.1), i.e.

1 _
f (; Zaﬁwj—nxj,tj) =0, j=s,..,N, (3.7)
J i=0

expecting z; to become an approximation of the true solution value z.(¢;).
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Introduce the map
[ %0 — %o
251 — Ts~-1

1 8
f (‘E‘ asizs—iszs’ts)
Frz = 9

1 8
/ (71; > anizn_i, 2N, tN)

1=0

z€R™™D, |z —2.(4)| <0, §=0,1,...,N,

which represents the discretized map corresponding to the BDF. F, acts
within R™~+1)_ Then denote

:l:.(to)
IE*(tN)
and compute the Jacobian
-7 -
I
Fiay)=| 224 ... 24 F € L(R™(V+D),
hy hs f
ONs g ONLgu o
i hy Ax hy Av Fy J
whereby
* Xjo 44
A = fylm), Fj:= hL:Aj + fz(m5)
and

=0

n o= (P(tj)”%f:ajim*(tj—‘i)’x*(tj)’tj)'

Complete R™¥+D) with respect to the norms

Nzﬂoo = ma'x{[zil:i=0:1;-"1N}1
1< ,

"znﬂ’ = ”z”OO"'ma‘x{ B‘_zaﬁp(tj—i)zj-—i :J=3a-"aN}r
3 =0

which are consistent with the norms of C and C};, respectively. We then
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use the matrix norms
IGl: = max{||Gz||x : [|z]l0 =1},
IGllx = max{||Gzlleo : l2llx =1}, G € LR™MN¥Y),
Let Br(z%,0) := {z € R™V+D - |2 — z* || < 0}
In the following we use grids m belonging to a given grid class II, e.g. the
class of locally uniform grids with given constants ¢1, ¢z, hmax, such that
cih;j 1 < hj < cohj_1, h < hpax, for all j and all 7 € II. The smallest

grid class in which we are interested is the set Il.q, of all sufficiently fine
equidistant grids; however we always assume Iloq, C II.
Definition The BDF (3.7) is stable for (3.1) on grid class II if there exist
constants S > 0, p > 0 such that for arbitrary = € II the inequality

|z = 2|lz < S||Frz — Frzlloo (3.8)

is satisfied for all z, Z € Br(z}, 0).

Definition The BDF (3.7) is weakly unstable for (3.1) on II if the inequality
Iz — 2llx < Sh™||Frz — FrZlloo (3.9)

is valid for all 2,z € Br(z}, 0r), ® € II, where S > 0, v > 0 are constants
but gr > 0 may depend on the chosen grid =; ~y is said to be the order of

instability.

Then, introduce the local discretization error 7, := Frzk. Clearly, its first
components 7;, j =0,...,5 — 1, represent the errors in the starting values,
but

1< ,
i=f (FZaﬁx*(t,-_i),x.(tj),tj> forj=s,...,N.

Surely, the point of interest is the so-called global error
Ex i=Tp — Xg
where z, € R™"+1) consists of the components xg,Z1,...,Zx € R™. Note
thate; = 7; for j=0,1,...,s - 1.
Recall some standard arguments from discretization theory (e.g. Keller
(1975)), which we apply and modify, appropriately.

1  First of all, if the z;, § > s in (3.7) exist and z, € By(z},0), then
stability implies the error estimate

lexllx < Sll7xlloo,
hence

max |z, (t;) — ;| < S{jlélgfl |z (t5) — ;| + max |71} (3.10)
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2 Then, it is sufficient for stability that there exists a uniform bound S,,

I(Fr@) e <81, mell (3.11)
3  Assuming stability, for sufficiently small h,.x and g, the equation
Frz=0

has exactly one solution z, on Br(z}, ), which can be computed by
the Newton method.

4  (3.11) can be proved by permuting linearization and discretization, and
using the Banach lemma.

Under which conditions do these standard arguments remain valid when
the BDF is applied to DAEs?

In Section 1 we have learnt that, in higher index cases, some weak in-
stabilities should be expected. Is it possible to carry over these standard
arguments then? How can weak instabilities be distinguished?

3.2. On the BDF applied to linear DAEs

In any case, the behaviour of the BDF applied to linear DAEs plays a crucial
role. This is why we investigate this question in more detail. It should not
be surprising that stability and instability, respectively, depend on the index
of the DAE. In the following we will point out that certain time-dependent
subspaces are also responsible for exponential instabilities.

Let us turn to the special case when the BDF is applied to linear DAEs,
that is

1< .
Alty) = D ogizii + Bltj)z; = q(t;),  i2s, (3.12)
7 i=0
where starting values zg,...,Z;—1 are given. For the local error 7, we now
derive
1 8
7= Alti)i > ajiza(tii) + B(t;)z.(t;) — a(t;)

= A(t)) {hi zajim*(tj._i) — (Pz.)'(t;) + P,(tj)(l:*(t)} ; (3.13)

J =0
consequently, the local error belongs to a subspace,
7 € imA(tj)7 Jj2s,

which is characteristic of DAEs, and we will make use of this later.
To obtain z; for j > s, we have to solve the linear system

1 L]
Fjz; = A(t]’)h—j Z iz + q(t;), (3.14)
i=1
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with the coefficient matrix
1
F;:= h—jajoA(tj) + B(t;). (3.15)

Is this matrix F; nonsingular? Clearly, nonsingularity is necessary for the
BDF to work well. Note that for = —1 in (3.2), all related coefficient
matrices F; are singular. However, as example (3.2) also shows, even if the
BDF becomes formally feasible, i.e. if all matrices F; are nonsingular, the
BDF may fail.

Equation Frz = 0, which represents the BDF, now has the special form
Frx = LxX — qr, where

S -
I
Ly = assAs %Aa F, € L(Rm(N+1)),
hs ha
QaNs . QN1 .
v N1y
i o AN oy AN Fy |
(3.16)
Aj:=A(tj), 520, (gr)j == for j=0,...,8—1, (gr); = q(t;) for j > s.
Clearly, £ is nonsingular if F,, ..., Fiy are. Moreover, in the case of linear
DAEs, the stability inequality (3.8) simplifies to
1€z I < 8. (3.17)

It should be mentioned that £, is to be understood as a discretized map
L given in (2.25). By Corollary 2.7, we may expect L, to be stable for
index-1-tractable DAEs only.

Next we are going to prove the characteristic inequalities of £1.

Case 1: Assume (2.1) to be transferable (index-1 tractable).

Recall from Section 2 that A; := A + (B — AP’)Q becomes a nonsingular
matrix function. In addition, by Lemma 2.1, G := A + BQ also remains
nonsingular; and furthermore G = A; + AP'Q = A;(I + PP'Q). First of
all, it is easy to check that F); is nonsingular if

1 -
I+ a,—oh—jP(tj)G(tj) 'B(t;) =: H;
is, i.e. at least for small h;j. Then we compute

Fil= {Q(m + ;l—h,-P,(t»H;lP(tj)} Gt~ (318)

jo

cond(Fj) ~ hj'.
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Since Fy,..., Fy are nonsingular, so is £,. Next, by decoupling L,z = w
in a similar way as (2.1) in Section 2, we generate a uniform bound for £,
on an approprlate grid class II. £,,z = w means in detail that 2; = w;,
j=0,...,8—1,and

A(t;) Za,,z,-,-&-B(tJ)z, wj, j=s,...,N. (3.19)
7 i=0

Denote u; := P(t,)zj, v; := Q(t;)z;. Multiply (3.19) by P(t;)A:1(¢;)~! and
(t,)Al(t,) , respectively. This yields
Z%P(ta (wj—i +vj—i) + (PAT'B)(t;)uj = (PATY)(t;)w;

~7 i=o
v; + Qu(tj)u; = (QAT)(t;)w;.
Clearly, if the projector function P is constant, then this formula fits the
system (2.6), (2 7) very well. In particular, the first equation simplifies to

(3.20)

Za,,Pu,_, + (PAT'B)(tj)u; = (PATY)(t))w;.
-7 i=0
For w = g, this is in fact the same expression we would obtain by applying
the BDF to the regular ODE inherent in (2.1)

v + PAT'Bu = PATlq.

If P’ does not vanish, there arises some additional feedback between the
components in (3.20). Because

P(t)(uj—i + vj—i) = wj—; + (P(t;) — P(tj=i))(uj—i + vjs)
1
= uj_i+ / P'(tj—; + s(t; — t;_s))ds(t; — t;_:) (uj—i + vi_)
0
we are able to rearrange the first equation in (3.20) to

Ea,,u]_. + ZDJl(“J—z +v;-i) + (PAT IB)(tJ)u’J (PAl—l)(tj)'wja
7 i=0 i=1

where the coefficient matrices are uniformly bounded.

Theorem 3.1 Let the given variable step-size BDF applied to a regular
explicit ODE be stable on the grid class II. Let the DAE (2.1) be index-1
tractable. Then, there is a bound S such that £, is bijective, and

ICztlloo < 1L7 £ S for all m € 11 (3.21)
Proof. By standard arguments we easily obtain

| < ,
ng‘ lu’Jl <5 I;‘gngaly
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therefore
| < .
r?ggclvgl < Spmax |w;]
and
max |-— o <8 max w
J>8] §J¢Jt| 3 |J|
O

Note that Theorem 3.1 implies the error estimation
ma.x|a:*(t]) —zj| < S{ max |za(t;) — x| + ma.xl'rjl} (3.22)
iz
which is well known in the case of regular ODEs.

Case 2: Assume (2.1) to be index-2-tractable.

We begin this part by quoting the nice linear index-2 DAE from Gear and
Petzold (1984), which was constructed to illustrate the instability of Euler’s
backward rule.

Example The DAE
[(1) 1?] '(t)+[(1, 147 ]x(t)"q(t) (3.23)

has the global index-2 for all parameter values 7 € R. Compute here (cf.
(2.19)-(2.21))

o - [1 7] m0-[2,2,]

Qe = [ M poRe -

The backward Euler rule applied to (3.23) gives for n # —1

z1; = qt;) —ntjza;,

{112(t1)— . —(q1(tj) - ¢11(tj—1))},

1
z2,5 31+1+

_n
147
but the exact solution is

zi(t) = qu(t) —ntz2(?),
z2t) = qo(t) — 1 (t).
Careful further investigation will reveal that the backward Euler rule for this

problem is weakly unstable but convergent if > —0.5, and exponentially
unstable for all n < —0.5, n # —1. For n = —1 the backward Euler rule does

not work at all.
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In the following we exclude such situations where the behaviour of a nu-
merical method depends essentially on parameter values, all of which belong
to the same category, by restricting the class of DAEs (2.1) to those with
constant ker A(t) and P’ = 0, respectively.

Let us turn back to the BDF applied to (2.1), that is to formula (3.12).
The first problem to be solved is the nonsingularity of F; given by (3.15).
The question may be answered by the use of the decoupling technique de-
scribed in Section 2. Supposing that P’ = 0, and

) 1 _
H(tj) =1+ h;—(PP\G; B)(t;)
Jo

becomes nonsingular (which happens at least for small k;), the matrix F;
will also be nonsingular, and

1

Qjo

(I-QP,G;'B)H™ PPy G3|(t;)
(3.24)

1
Fj‘1 e ({QP1+P1Q1+C¥joF_'QQ1+hJ'
)

cond(F;) ~ ;2.

Expression (3.24) is evaluated in Mérz (1990, Lemma 3.1). Thereby, G2 :=
A + BoPQ; is used instead of Ay in Section 2. Due to Lemma 2.1 (cf.
(2.16)), both Az and G are nonsingular simultaneously. More precisely,
A'zl = Gz(I - PI(PP)Q1), (I - Pi(PP)Q1)™! = (I + P(PPYQ,) are
valid.

It should be mentioned that the term Q@ within (3.24) does not vanish
principally as a matter of index-2 tractability. This is true independently of
possible special structural forms of the DAE itself. However, if the DAE has
a special form, e.g. Hessenberg form, then, employing the special structure,
we can look for an appropriate scaling of F;.

Next we decompose the system £,z = w (cf. (3.16), (3.19)) to gain infor-
mation about £;!, once again using the projector technique. Multiplying
(3.19) by (PPiG3Y)(t5), (QP1G5;Y)(t;) and (Q1G5Y)(t;), respectively, we
derive

8
hlePl(tj) Y jizi—i + PPi(t;)Ga(t;) ' B(t;)PPi(t)z =
=0
= PPy(t;)Ga(t;) " wj, (3.25)

‘hleQl(tj)Zajizj—i‘}‘sz + QPy(t;)Ga(t;) ' B(t;)PPi(t;)z; =
1==0

= Qpl(tj)Gz(tj)_le, (3.26)

Ql(tj)zj = Ql(tj)Gg(t,-)'le, (3.27)
for j > s. Recall that z; = w; for j =0,...,s— 1. Note that we also use P,
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Q here as constant projector matrices. Inserting

1
h—PPl(tJ)Za,,zJ_,= = Za,,PPl(t, i)zj—i+
i=0 J i=0

+ Z%P (Pl(t]) Py(t;—){PP1(tj—i)zj—i + PQu(tj-i)zj-i}
=0
in equation (3.25), and taking into account (3.27), we are able to prove the
inequality
max |PPy(t;)z;] < Sy max|w;|
by standard arguments. Trivially,

max |Q1(t)2;] < S max |wj]
also becomes true due to (3.27). Moreover, (3.26), (3.27) yield

Qz = _QQl(tJ)Za”{PPl(t, i) + PQu(tj-i)}zj-i

=0
*QPl(tj)Gz(t]) 1B(t;)PPy(t;)z + QP1(t;)Ga(t;) " w;

= _QQl(tJ)Eathl(tJ—-z)GZ(t]—-z) Wj—i (3.28)

=0

+ Z ale (Ql(tJ) Ql(tj—t))PPI(t]"l)zJ"‘
i=0
“QPI(tJ)G2(tJ) lB(tJ)PPI(t])zJ + QPI(tJ)GZ(tJ) wy,
for j > s, where we introduce, for more convenience,

Wj 1= wj for j > s,
Wj = Ga(tj)w; forj<s-1 (3.29)

Now, we can estimate

IQzJI < _IQQI t])EaJin(tJ—-‘l)G2(tJ-t) I@J-—zl + 53 max |w.1' (3 30)

=0
Since (3. 19) immediately implies

Z%:Pzg—t = PA(t;)*{-B(tj)z +w;}, jzs, (3.31)

}

it follows that
(3.32)

lzllx < Ss {Igla.x |w;| + ma.x— QQ1(t) Za]lQl(tJ i)Ga(tj- :) W)
i=0
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becomes valid.
Consider now expression (3.14) again. Solving this equation in practice,
instead of the values z;, only certain %; satisfying

~ 1< - ,
Fif; = —Alty)y- Yo GiEi-i+at) +6;, s, (3.33)
=1
where Z; := z;, j =0,...,s — 1, are generated. The 6, represent round-off

errors (but also errors that arise later when solving nonlinear equations).

Then, if we put 2; = x,(t;) — &;, j > 0, wj = 7; — §; results for j > s, and
wj = x«(t;) —z; for the starting phase j = 0,...,s—1. Because 7; € imA(t;)
(cf. (3.13)) we obtain for all k > s

Qi(tr)Ga(tk) MBe = Qu(te)Gal(tr) ‘wi
Q1(t)Ga(te) ™ (i — 6x)
= Qu(tx)Ga(tx) " (A(te) Altk) i — 6).
However, on the other hand,
G;'A = G;Y(A+(B-AP)Q)P=G;'AP
= G;'(A1+ BPQ,)P,P=P,P

holds, thus Q:G5'A = @, PP =0.
Consequently,

Q1(tx)Ga(ty) Yk = ~Q1(tk)Ga(ty) 6% (3.34)

for k > s, which appears to be characteristic of these DAEs.
Finally, collect this result in

Theorem 3.2 Let the given BDF applied to regular explicit ODEs become
stable on the grid class II. Let the DAE (2.1) be index-2 tractable, and,
additionally, let P/ = 0.

(i) Then L, is bijective, and
£ oo < NE7 ) < SR™Y,  mell, (3.35)

is true with a certain constant S > 0.
(ii) The following precise error estimates hold:

max|P(z.(4;) - £;] < Sp{ max |P(z.(t;) — ;)| + max|7; ~ §;l}
(3.36)

and
Qea(t) ~ 35)l <
< Sof max IP(@.(t;) - 2;)| + maxry - 651} +
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+% QR1(t;) Y jiQu1(tj—i)Ga(tj—i) 26—,  (3.37)
i i=0

where 5j = Ga(t;)(z«(t;) — ), 5 =0,...,5 — 1, reflect the errors in
the starting values, and

6j:=6; forj>s.
Remarks

1 If exact values z; = z.(t;), § = 0,...,8 — 1, are used in the starting
phase, (3.36), (3.37) immediately imply, for §; =0, j > s,

max [z, (t;) - 23] < S max|r;, (3.38)

hence the BDF converges formally with the expected order. However,
practical computations cannot be managed in such a way that all §;
vanish in reality.

2 Expression (3.28) shows that, for small h;, Qz; behaves in fact mainly
as

1 2 1~

h_jQQl(tj)Zainl(tj—i)GZ(tj—i) M.
i=0

In this sense, (3.37) and (3.35) cannot be improved. We really have

to deal with a weak instability. Fortunately, this instability does not

affect the nonnull space components at all (cf. (3.36)).

Case 3: Assume (2.1) to be index-3 tractable.
First recall our example (3.2) to illustrate that a restriction to the class
of DAEs with constant null space ker A(t) will not do. It may be checked
that, in (3.2), (PQ1Q2)'(t) does not vanish identically. This seems to be the
crucial point in the index-3 case. As in the previous parts we consider £,
given by (3.16).

Recall that (cf. (3.16), (3.33))

o 0

s— - 0

LaXy = Gr = ;(t‘.j y, LaZp —Qr = 0p = s,
L Q(tN) ] | 6N ]
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Ty (to) — Ig

Tulls—1) — To—
me:r_Q'Ir:Tw = *( ¢ 11)_ -1 y
s

o]
thus L (z} — Zx) = T — b7.

By the use of this projector technique we decompose (3.19) r%pectlvely
Lrz = w. Now we multiply (3.19) by PP1P2A3 , QP1P2A3 , Q1P2A3
and Q2A3 , respectively. We omit these straigthforward but very extensive
evaluations here and mention only that we now have to insert expressions
given by the BDF into each other twice to approximate first and second
derivatives. This is why the BDF on the whole becomes active just for
7 > 2s. The first s steps have to be analysed separately. Let us formulate
the results:

Theorem 3.3 Let the given BDF applied to regular explicit ODE become
stable on the grid class II. Let the DAE (2.1) be index-3 tractable and, in
addition, let P' =0, (PQ:1Q2) =0.

(i) Then L, is bijective,
1L oo < I1C7 e < SB72, meTl, (3.39)

holds with a certain constant S.
(ii) The following detailed error estimates become true with

wr = max|7j — §;| + max |z.(t;) - z;], forj>2s:

|PPy(2))(xs(t;) — £5)| < S1wn, (3.40)

[PQ1(t;)(z«(t)) — &5)| £ Sawr + EanPQleAS(tJ z)—lsa —i

~7 i=0
(3.41)
and
|Q($*(tj) - Zj| < Sswr+
Zaﬁ(chlpzAal)(tJ i = by )]
=0
+ 'Yh Zaﬂh Zag —i—kPQ1Q2A3(t—i—k) 16, i_| (3.42)
i=0 3=4 =0




182 R. MARz
Thereby, v := max |QQ1 ()|, and
Sj = §; forj>s,
§; = As(tj)(zu(tj) —z;) forj<s-—1.
Remarks
1  Now, the worst error sensitivity has order hj'z. It is again somewhat
local and~belongs to the null space component only.
2  Putting é; = 0 in (3.40)—(3.42), i.e. using exact starting values and

computing without any round-off error, (3.40), (3.41) provide for j > 2s
|P(xa(t;) — ;)| < Symax |7, (3.43)

but
Q. (t;) — ;)] < S3maxir;|+

8
+ I 2 en(QQPAT -yl (340
i=0

The last term in (3.44) is also troublesome. It reflects the new quality
of the problem of index-3-tractable DAEs.
In constant step-size computations, the local error is smooth if the
solution z,(t) itself is smooth enough. In this case, we again have
|z« (t;) — x| = 1(h*), 7 > 2s. However, step-size changes, and simi-
larly the first s steps raise difficulties. In particular, the variable step
backward Euler method does not converge since

%((chlpzA;l)(tj)r,— — (Q@1PaATY) (1)1

~ = 5-(Q@1Q2) (1) (P (25)(hy — hy-).
7

Unfortunately, the backward Euler method also fails to provide accu-
rate starting values.

3.8. On the BDF applied to nonlinear DAEs

Now, having provided information on £, we continue the investigation of
nonlinear DAEs started previously. In the following, we understand £, to
be related to the equation linearized in the solution z,, i.e. (cf. (3.6))

Lrx=F(Tu)r-

In other words, £, represents the discretization of the linearization. On
the other hand, F.(z}) is the derivative of the discretized map F, at z}.
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Compute
S i
0
Lr—Fi(zt)=| 22D, ... 24p, K, . (3.45)
hs hs
QNs . aNl'
- hN DN hN DN Kn i
where

D; = Aut;) - A = f,(C(t5)) = fy(mj),
K; = %A,(t,.) +B.(t;) - ‘;‘,—";’A; — fi(ms)

aJo

= (f,,(((t;) £y i) + £2(8(t5) — £2(nz)),
) = ((Pw*) (t)—P’(t)w*(t),w*(t),t),
o= (Pt Zoaj,m 6 Tht),  Tp =z (te).
Further, we have for j > s ‘

((Lx = Fr(z*))2)j = th Zaﬂzl—!"'(fx(C(tJ)) f2(n3))z;,

7 i=0
and D; = DjP(tj),

Za];z] - = Djh Za_,,P(t_, ;)z,-.-f-

~7 i=0 1—0
+D; ZO‘J: (P(t,) P(tj-i))zj—i.
=0
Consequently
I(Lx — Fr(zz))zlloo < Yall2l (3.46)

with a grid-dependent value
Yr = comax || Dj| + max | £z(¢(t) — fo(m)ll,

where ¢y denotes a certain constant. Clearly, v, becomes small for refined
grids.
Note that for all quasi-linear DAEs of the form

A(R)L'(t) + g(z(t),t) =0 (3.47)
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we just obtain
Lr = FL(z}). (3.48)

In other words, the BDF discretization and linearization commute asymp-

totically in general, but for special DAEs (3.47) they commute exactly.
Next, supposing F.(z%) to be bijective, we turn to the question as to

whether the nonlinear equation F,z = 0 is solvable. To this end, we intro-

duce the equivalent fixed point problem FErz = z, where the map E, acts in
Rm(N +1)’

Epz:=z— Fi(zt) 1 Frz, 2z € Br(z},00).

As usual when we mean to apply Banach’s Fixed Point Theorem, we state
1

Epz— B,z = Fli(z})™ / {(FL(z2) - Fi(sz + (1 - 8)2)}ds(z — 5) (3.49)
0

and

E,z—z;, = z—1z;— f;,(w;‘,)_l(f,,z — Fry + Frzy)

i

1
Fuan)™ [{Fala2) - Faloz+ (1= s)a)}ds(z — o) -
0

—Fr(xy) Fray, (3.50)

for z,z € Br(z}, 00)-
Given a constant a < 1, we choose £ = ¢(r) such that

el Fp(zh) e La< 1. (3.51)
Moreover, since F,. is continuous, there exists a ¢ = g(e(w)) > 0 so that
1Fr(23) = Fr@)llx <€ for all y € By(z3, 0)-
Hence, for 2,z € Br(z%, 0) (3.49), (3.51) provide
|Erz = ExZllx < allz—Z|x (3.52)
IBrz —z3lle < allz - 2}llx + 17 (23) " 7l (3.53)
If we are sure to manage the inequality
177 (z0) " Telle < (1 - a)e, (3.54)

we know the map Er to have a unique fixed point on B(z%,0). However,
keep in mind that € and g, may both depend on the grid =.
The same arguments apply to the perturbed equation

fﬂz = 611—. (3-55)
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If we suppose the inequality
[ Fx(@2) " (7x — b)llx < (1 — @)

can be satisfied, equation (3.55) is uniquely solvable on Br(z%,0), and, for
its solution Zr, the error estimate
- 1 _
lz7 — Zxllr < 1___0”-7:;(3’;) 1(7"rr = 6x)llx (3.56)
is valid.
The BDF is said to be feasible in this case, i.e. if the nonlinear equations to
be solved per step are locally uniquely solvable. Then, the Newton method
may be applied, where (3.56) suggests how accurate the defects §; should

be.
In the following IIy C II always denotes a grid class where the maximal

step-sizes of all grids are sufficiently small.

Theorem 3.4 Let the given BDF applied to regular explicit ODEs be
stable on the grid class II. Let the DAE (3.1) satisfy Assumption 2.10, and
let z, € C,lv solve this DAE. In addition, let {A., B.} be index-1 tractable.
Then the BDF is feasible and stable on IIg C II. The convergence order is
the same as in case of regular ODEs.

Proof. By Theorem 3.1, there is a uniform bound S such that L], < §
for all 7 € II. Choose sufficiently fine grids (cf. (3.46)) so that

xS < 1, x € .
Hence ||Lx — Fh(z*)|lx < ¥ry |L5 = < S imply the bijectivity of F4(z*) as
well as

S
=: 5.
1 -8 !
Consequently, in (3.51) we need uniform € = a/S; and 6, respectively, for
all T € II,.
Moreover, (3.54) is easy to satisfy by choosing refined grids and sufficiently
accurate starting values such that

1
I|T1r|[oo < _1(1 - a)g'

|7 (@) " e <

- 1
Moreover, for 2,z € By(z%, 0) the matrix [ F,(sz + (1 — 8)z)ds =: F![z, 2]
0

is also nonsingular since

_ S
172) - Feladlle <o, VR S T =S
Hence, z—Z = F.[z, 2|~} (Fr2z— FrZ) implies stability immediately. Then,
(3.10) (or (3.56)) provides convergence. O
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Remark Clearly, the nonlinear equations to be solved per step are locally
uniquely solvable, and the Newton method can be applied. The same is true
for the perturbed equations (cf. (3.56)).

In the case of an index-2-tractable matrix coefficient pair {A., B.} the
situation becomes worse. Theorem 3.2 only provides for |£; |, < Sh~! for
7 € II. How does this affect nonlinear DAEs?

Lemma 3.5 Let Assumption 2.10 be fulfilled, and let z, € C}, be given.
In addition, let P’ = 0. Then, let A;(y,z,t) := f,(y,2,t) + fz(y,7,t)Q be
singular for all (y,z,t) belonging to a neighbourhood N of the trajectory
T. of z, within R™ x R™ x R, but with constant rank there. Moreover, let
A1(¢(t)) have a smooth null space. Furthermore let

ker A (y, z, t) n Sl(y7 T, t) = {0}1 (357)
S1(y,z,t) :={z €R™ : fo(y,z,t)Pz € imAy(y,z,1)},
for all (y,z,t) € T. Then the DAE linearized in z, is index-2 tractable.

Proof. We have A.(t) := f,(((t)), Ba(t) := f(¢(t)), furthermore A, (t) =
A + B.®)Q = A1), Sea(t) = S1(CH)), ker(Aus(®) N Ser(t) =
{0}. Since the null space of A;(¢(t)) is assumed to depend continuously
differentiably on ¢ we are done. O

Lemma 3.6 Let Assumption 2.10 be valid and let z, € C}, solve the DAE
(3.1). In addition, let imfy(y, z,t) be independent of y, i.e.

im(f)(y,2,t,)) = R(z?).
Then, for the local errors 7; generated by the BDF (3.7), the implication
7j € R(z«(t;),t;), =8, (3.58)
becomes true.
Proof. Denote shortly
1 8
pi = P(tj) o~ Doiimatizi), A= (P) () — P(t)z.(ty).
Derive

i = f(n;) = fus, (), t5)
= fp z(t5) t5) = F(Xj, 2 (t5), 25)

1
= [ Fytens+ (= s mult) ) ds(us = ),
0

thus (3.58) is valid. O
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Theorem 3.7 Let II be such a grid class where the quotient of the max-
imal and minimal step-sizes of any 7 € II is bounded by a global constant
K,ie.
h-h"'<K, 7ell

Let the given BDF applied to regular explicit ODEs become stable on II.
Let DAE (3.1) satisfy all assumptions of Lemma 3.5 as well as Lemma 3.6;
furthermore, let the partial Jacobians fz'/’ f. be Lipschitz with respect to
(y,z). In addition, let

(Pz.)' () — — ZaJ,Pa:,.(t,_,) < coh?, (3.59)

-7 =0

be valid for all j > s, = € II and certain constants co > 0, p > 1. Then the
BDF is feasible and weakly instable on I

If we suppose the Q1-components of the starting values to have the order
of accuracy p + 1 and the other ones order p, then the convergence order is

P

Proof. Because of the Lipschitz continuity of f, and f;, F; also becomes
Lipschitz continuous. In particular

IF(z7) ~ Fx@)ll= < Llizr - ylix (3.60)

is valid. Moreover, in (3.46) we may estimate (using the notation from the
proof of Lemma 3.6)

e L1 mgxmj - Aj| £ cohP.
8

Smce (cf. (3.46)) |Lx—Fr(z2)|lx < c2h? and, due to Theorem 3.2, | £ |r <

Sh™!, we may refine the grids in such a way that
2SR~ AP < c2SKRP™! < 1.
Consequently, F; (z}) becomes nonsingular, and
IF4(@) M < ShY(1 - coSKRPY) L,
Next, by Lemma 3.6,
7; € R(z4(t5),t5) =im A, (¢;), j2>s.
Taking into account (3.32), this implies

Ie7 el < s{ max|r;| + (3:61)

}

—QQl(ta) E 0;iQ1(tj~i) (2 (tji) — j-s)

i=j+1-8

s<]<23—
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Choosing the starting values to be as accurate as necessary for
1
h—lel(tj)(x*(tj) —z;)| < e3h?, (3.62)

lz*(tj)—mjl < e3h?, §=0,...,8—1,

to be satisfied, we obtain
L7 7xllr < cah?.
Then, because
Fa@p) ™t = = L3N (Lr ~ Fr(zn)) L7} (3.63)
the inequality
[ F2@n) el < NI = L3 (Lr = Fr(@5)) M L7 Tl

< (1 - caSKhP~Y)1cyh?
becomes true.

Next we show that both (3.51) and (3.54) may be satisfied. Given 0 < o <
1, choose ¢ = a(1/S)h(1 — c2SKhP~1) to make E, contractive. Since F~.
fulfils the Lipschitz condition (3.60), we may choose the related g((n)) =: o
as p=1/Le.

Finally, condition (3.54) becomes valid if

(1 —caSKhP ) teshp < (1—a)o=(1— a)%a%h(l — cpSKhP 1)

is satisfied, or equivalently

cah?! < a(l - a)fls—(l — e SKRP1Y2,

but this can be managed by refining the grids.
By the same arguments as in Theorem 3.4, we derive

Fole, 27 < T2 Sh71(1 - aSKRP) Y,

and hence the BDF becomes weakly unstable. 1

Remarks
1  From (3.56), (3.63) we conclude the error estimate

flzz — Zxllr < Slllﬁ,?l(ﬂr ~ 6 )llx-

Taking (3.32) into consideration we are recommended to compute the
Q1 components of the starting values with a higher order accuracy than
the remaining components (cf. also (3.61)). Moreover, the defects §; in
the nonlinear equations should also be kept smaller in those components
which do not belong to im(fy(...,z.(;),t;) = R(z.(t;),t;). This can
be realized more easily if this subspace is kept constant.
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[ 3]

Clearly, Pz, € C* implies p = s in (3.59).

3  Theorem 3.7 does not apply to the backward Euler method. It is not
yet clear whether the condition p > 1 is a technical one for that large
class of index-2 DAEs considered. However, Theorem 3.2 is also valid
for the backward Euler method. The detailed error estimates (3.36),
(3.37) show that the weak instabilities only affect certain components,
and, moreover, only act locally. Inequality (3.35) does not comprise
this situation precisely, but it represents a crude upper bound.

Using the detailed information given by (3.37), (3.36) and (3.32) for
investigating nonlinear equations requires much technical effort. For
special DAEs in Hessenberg form (0.3) this is done in Gear et al. (1985),
Létstedt and Petzold (1986) and Brenan and Engquist (1988). The
statements of Theorem 3.2 remain valid for these nonlinear DAEs. In
particular, the backward Euler is proved to converge.

Analogously to Theorem 3.7, an assertion concerning index-3-tractable
DAEs could be proved using Theorem 3.3. In Létstedt and Petzold (1986)
and Brenan and Engquist (1988), a careful detailed decoupling of nonlinear
index-3 DAEs in Hessenberg form (0.4) is carried out to obtain results similar
to those we have proved for the linear case (cf. (3.40)—(3.42)).

While we are optimistic about overcoming the practical problems arising
in large classes of index-2 equations, like error estimation and step-size con-
trol, the difficulties concerning the index-3 case seem to be more intractable.
As is shown by (3.42), the Q2 components of the starting values should now
have order hP*2, if the local error 7; has order p. Moreover, the defects §;
of the nonlinear equations to be solved per integration step should be kept
small enough in the respective subspaces. Furthermore, remember that pro-
viding sufficiently accurate initial and starting values now becomes difficult.
The nonlinear systems to be solved are ill conditioned, namely cond(F;)
behaves like A} °.

For special nonlinear index-3 DAEs describing constrained mechanical
motion, BDF codes are reported to work (e.g. Petzold and Lotstedt (1986),
Fiihrer (1988)) if the critical components are omitted from the error control,
and only the PP; component (cf. (3.40)) is controlled. This may be applied
if computing these PP; components only will do for practical reasons.

For a fairly detailed discussion of software for DAEs we refer to Brenan
et al. (1989) and Hairer and Wanner (1991).

3.4. Further integration methods

First of all, it should be mentioned that these results, which have been
proved for variable step-size BDF's, also apply to variable order variable
step-size BDFs in the same way.

For one-step methods, there is a natural extension to fully implicit DAEs



190 R. MARz

(3-1), namely
13 s _ 8
f (-h— Z OGiZj—i, Zﬂﬁz,-_,-, tj) =0, tj = Zﬂjitj—i- (3.64)
J §=0 =0 i=0

The consistency conditions are the same as those for the regular ODE case,
but extra stability requirements are needed to ensure stability even in index-
1 DAEs (cf. (1.12)). We do not recommend this method since it did not
work well in experiments.

If the leading coefficient matrix has a constant range imf,(y,z,t) =: R,
and S € L(R™) denotes a projector onto R, T := I — S, we may formulate
(Mérz, 1985) a projected version of (3.64) as follows:

1 8 8 _
Sf (; Y @iTioi, ) Biiii, tj) +Tf(0,z;,t;) = 0. (3.65)
7 =0 =0
Applied to semi-linear DAEs
v +g(u,v,t) =0, h(u,v,t)=0 (3.66)

this simply means

1 8 8 8 _

7y g ji%i—i + g (g Bjittj—i, Z(:) BjiVj—is tj) =0 { (3.67)

h(uj,vj,t;) =0

Moreover, linear multi-step methods may be formulated as

1 3 8
P(t;) {7;; ; Qjilj—i = gﬂjiw—i} -y=0 (3.68)
f(ijzjatj) =0
Method (3.68) is motivated by the equivalent formulation of (3.1)
P(t{«'(t) —y(t)} —y(t) =0
o =0 | (3.69)

When applied to the semi-explicit system (3.66), this linear multi-step me-
thod leads to

1 8 L]
™ Y i — Y Big((wjmi, vj—i tji) =0 (3.70)
J i=0 i=0 : :
h(u;j, v,t5) =0
All these methods are considered on general nonequidistant partitions = :
to <t <--- <ty =T. Our notation does not only allow for variable step-

size, but also for formulae of different order and type, which is the common
situation in many ODE codes.
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Theorem 3.8 Let the methods considered be stable on the grid class IT for
regular ODEs. Let DAE (3.1) satisfy Assumption 2.10, and let z, € C}, solve
this DAE. Furthermore, let {A., B,} be index-1 tractable. In addition, let
the partial Jacobian f,(y,z,t) have a constant null space N when applying
the linear multi-step method (3.68), but a constant range R when applying
the one-step method (3.65).

Then both methods are feasible and stable on IIg € II. The order of
consistency is the same as for regular ODEs.

Proof. Taking into account that (3.69) is again an index-1-tractable DAE,
we apply the same arguments as those used for Theorem 3.4 in both cases.
0

Remarks

1  In both methods, the choice 8;, = 0 is allowed. In particular, in (3.70)
one can take advantage of such ‘explicit’ methods.

2  The linear multi-step method is also proved to be stable (by the same
arguments) for a time varying null space N (). However, then a certain
order reduction may occur. This is caused by a somewhat inexact
realization of the subspace structure of the DAE. More precisely, if z,
is smooth enough, we have

= P(tJ)z:{ aJi(Px*) (ti—i) — Bji(Pz.)' (¢ -—c)}

i=0

+P(t;) i {"%Tain(tj—i)z*(tj—i) + ﬁjipl(tj—-i)z*(tj-i)}

i=0

P(tj)z{ a]t (Pxy)(tj—s) — ﬂ.n(PfU*)'(t -i) +

=0

( anQ(t} 1) JtQ’(tJ—z)) -'B*(tj—z)}

Again, the conditions

L 8 8
Y ooji=0, Y ojilti-i—t;)=h; ) B

i=0 i=0 i=0
turn out to be necessary and sufficient for the consistency at all. How-
ever, for order 2 we need two more conditions, the expected one

]

> {ei(tj—i — t5)® — 2h;Bji(tj—i — t;)} =0

i=0
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as well as
8

> {asiltini = t5)% = hiBi(ti—i — £))}Q'(¢;) = 0.

=0
Hence, e.g. the trapezoidal rule has order 1 only in this case.

3 The methods (3.65) and (3.68) naturally generate values z; belonging

to the state manifold of the DAE, which turns out to be a favourable
property.

Among the Runge-Kutta methods

s
T =xj_1+h; El b,‘X;,
1=

8
fXhwj1+hy 2 aik Xy, tj—1 + cih;) =0, (3.71)
i=1,...,s,
those with the coefficients b; = ay4;, ¢ = 1,...,8, ¢, = 1 and a nonsingular

matrix (a;;) automatically provide values x; belonging to the state manifold,
if the method is applied to an index-1 DAE (3.1) with constant null space
(e.g. Griepentrog and Marz (1986)). Then, the method maintains the order
which it has for regular ODEs.

As we have learnt in Section 1, explicit Runge-Kutta methods (those
having a;; = 0 for ¢ < j) are not suited for DAEs.

A fairly detailed discussion of general implicit Runge-Kutta methods as
well as of extrapolation methods for index-1 DAEs is given in Brenan et al.
(1989). As already indicated in Section 1, additional stability conditions
have to be fulfilled, and one has to put up with order reduction.

A comprehensive exposition of Runge-Kutta methods for index-2 and
index-3 DAEs in Hessenberg form (cf. (0.3), (0.4)) one can find in Hairer
et al. (1989). A good work in which the well-known extrapolation methods,
for example, are extended can be found in Deuflhard et al. (1987), Lubich
(1990) and Hairer et al. (1989). All these methods extensively use the special
structure of the given Hessenberg form DAEs. In particular, the problems
caused by weak instability have been overcome e.g. by special error control
in the nonlinear equations and by projections onto the given manifolds,
respectively.

The projected implicit Runge-Kutta methods (Ascher and Petzold, 1990)
also use these ideas.

4. Brief remarks on related problems

4.1. Index reduction

From the point of view of computational tractability, it is desirable for the
DAE to have an index which is as small as possible. The procedure for
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determining the differentiation index described in Section 2.2 is an index
reduction method (cf. Griepentrog (1991)), in fact. However, in Section
2.2 it was mentioned that the attained system does not reflect the stability
behaviour of the original DAE well.

A different method for reducing the index of a DAE is presented in
Mrziglod (1987) and Cistjakov (1982). Instead of replacing constraints by
differential equations, in their method suitable differential equations are
deleted. This method works for linear DAEs, but it is not clear to what
kind of nonlinear DAEs it may be applicable.

A very useful idea for reducing the index is proposed in Gear et al. (1985)
for the special index-3 Hessenberg system

u'(t) —v(t) =0, (4.1)
v'(t) + g(u(t), v(t), ) + A, (u(t), t)Tw(t) =0, (4.2)
h(u(t),t) =0, (4.3)

which results from the Euler-Lagrange formulation of a constrained me-
chanical system. As mentioned earlier, the system with the differentiated
constraint

ha (u(t), )v(t) + hi(u(t),t) =0 (4.4)
instead of (4.3) would cause the numerical solution to drift away from the
constraint manifold. Note that the system (4.1), (4.2), (4.4) has index 2. To
stabilize the obtained index-2 system, an additional Lagrange multiplyer z
is introduced, and (4.3) is summed again. The resulting system

u'(t) —v(t) + kL (u(t), t)Tz(t) =0

v'(8) + g (u(t), v(t), £) + b, (u(t), ) w(t) = 0 (4.5)
ha (u(t), ho(t) + hi(u(t),t) = 0 '
h(u(t),t) =0

is index-2 tractable. Is it easy to check that any solution of (4.5) has a trivial
component z. Note that Fiihrer and Leimkuhler (1990) took advantage of
this fact to create a skilful special BDF modification to the Euler-Lagrange
equations.

In Section 2 we pointed out that higher index DAEs lead to ill posed IVPs
in the naturally given topologies (cf. Corollary 2.7). Hence, we may treat
them as such, i.e. use some regularization procedure. At first glance this
approach might appear a heavy gun, which is true insofar as standard reg-
ularization techniques (Tikhonov regularization, least-squares collocation)
are concerned. However, different special parametrizations may be created,
which are closely connected with the structure of the DAEs and the source of
their ill posedness. As usual, the regularized equations represent singularly
perturbed index-1-tractable DAEs and ODEs, respectively.
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For instance, the index-2 DAE
Ty —22=0, z1=¢
may be approximated by the index-1 system
i —22=0, ezxi+z1=¢q, x1(0)=q(0).

For general DAEs f(z'(t), z(t),t) = O the same regularization method pro-
vides
F(@' (), z(t) + eP(t)(Pz)'(t),t) = 0.

We refer to Hanke (1990, 1991) for a comprehensive survey on methods,
convergence results, asymptotic expansions etc.
4.2. Boundary value problems
Let us consider the linear equation
A(t)a'(t) + Bz(t) = q(t), t€ [to,T), (4.6)

once again. Now we are interested in a solution of (4.6) that satisfies the
boundary condition

Dyx(to) + Doz(T) = d (4.7)

with given matrices D1, Dy € L(R™), d € M := im(D;, D;). According
to the discussion of linear IVPs in section 2.1 we determine a fundamental
solution matrix X(-) by

AX'+BX = 0 (4.8)
IL(X(t)-1) = 0, (4.9)

where II,, := Py(to)... Pu-1(t0), and the coefficient matrix pair {4, B} is

supposed to be index-u tractable. From Theorem 2.5, the fundamental

solution matrix is uniquely determined, the columns of X belong to C},.
Now, (4.8), (4.9) immediately imply that

X(@t) = X(#)1,, (4.10)

holds, i.e. X(t) is singular for all ¢. Moreover, even ker X(t) = kerll,, is
true. However, what about the so-called shooting matrix

K := D1 X(to) + D2 X(T). (4.11)
Trivially, K becomes singular, too.

Theorem 4.1 Let {A, B} be index-u tractable and g sufficiently smooth.
Then the BVP (4.6), (4.7) is uniquely solvable for each d € M if and only if

imK = M, kerK =kerll, (4.12)
are valid.
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Proof. By standard arguments, we have to consider the linear system
Kz =d— D&(T),

where & € C}, denotes that solution of (4.6) which satisfies IT,&(to) = 0.

Clearly, kerIl, C ker K holds. Furthermore, Kz = 0, I,z # 0 would
imply that X (¢)II,z has to become a nontrivial solution of the homogeneous
BVP. O

Remarks

1  Theorem 4.1 generalizes facts that are well known for regular ODEs
(M =R™) and index-1-tractable DAEs (Griepentrog and Marz, 1986),

respectively.
2  The relations (4.12) mean that the boundary conditions are stated well;

in particular, the number of linearly independent boundary conditions

is rank IL,.
3 The wholg BVP is well posed in the naturally given topologies if and

only if 4 = 1, and if (4.12) is satisfied (cf. Corollary 2.7).

Linear and nonlinear BVPs in transferable (index-1-tractable) DAEs are
well understood. Classical arguments apply for discretizations by finite dif-
ferences (Griepentrog and Marz, 1986) and spline-collocation (Degenhardst,
1991; Ascher, 1989), respectively. In particular, it is possible to trace the
stability question of the BVP back to that of the IVPs. However, for the lat-
ter we refer to the typical explanations in Section 3, which are carried out in
the same manner for certain one-step methods, for example in Griepentrog
and Marz (1986). Furthermore, dichotomy is considered in its relationship
to the conditioning of the BVP in Lentini and Marz (1990a,b).

Of course, the singular shooting equation causes numerical difficulties.
This is why modified shooting techniques yielding isolatedly solvable non-
linear shooting equations have been proposed (Lamour, 1991a,b). The basic
idea is to combine the shooting equation and the equation for calculating
consistent initial values (cf. Theorem 2.3). For instance, simple shooting for
a linear BVP leads to the system

A(to)yo + Bl(to)mo = a(to),

Q(to)yo = 0,  Kzo=d— D%(T).
Surely, Theorem 4.1 suggests to apply shooting methods also to higher index
DAEs. This will work, supposed we are able to integrate the IVPs.

We are looking forward to related results for general index-2-tractable
DAEs.
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